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Abstract : 

 
This paper presents a numerical approache used for plotting the dispersion curves of cross-section ultrasonic 

guided waves. The spectral collocation method (SCM) described here can turn the set of partial differential equations 

for sound waves into an eigenvalue problem. In order to evaluate the efficiency of this method for an isotropic 

aluminum plate, we have established algorithm excuted with Matlab program. The results were compared with a 

classical bisection zero-finding method, the stiffness matrix method, and SAFE method. The results found confirm 

that the SCM remains conceptually simpler and depends on the differentiation matrices used. Finally, the method 

prove its accuracy, its calculation speed and its capacity to compute the phase velocity and wavenumber curves as 

well as the complete three-dimensional dispersion spectrum which includes both propagative (real wavenumber) and 

non-propagative modes (complex wave number). 

 

Keywords : Dispersion curves, Spectral Collocation Method, Lamb waves, Guided 

waves. 

 

1 Introduction  
 

Lamb waves are widely used for non-destructive evaluation (NDE) of finite-dimensional solids. They were first 

described in 1917 by the English mathematician Sir Horace Lamb (1849–1934) [1]. They belong to a type of waves 

found in thin plates without traction and shell structures. These waves are used to detect damage inside or on both 

surfaces of the plates. 

In the literature, the modes have been categorized in several ways, we use the classification of Auld [2]: the modes 

of propagation have a real wavenumber, that's why they are often the most useful for the applications of engineering 

in CND since they propagate and transport energy inside the structure without attenuation. The second type of 

solution is that of non-propagating modes with a complex or purely imaginary wavenumber. 

Dispersion curves are therefore essential since they make it possible to know the phase and propagation speeds of 

the waves (group speed) depending on the frequency of the wave generated as well as the thickness of the plate that 

we wants to inspect. In previous research, authors have discussed dispersion curves and their multiple applications 

in NDT. They proposed several techniques for drawing the dispersion curves. These methods include bisection 

method [3], Newton-Raphson method [4], transfer matrix method [5], etc. 
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To understand well the behavior of Lamb waves, the FEM remains the most robust numerical tool available. 

However, such simulations in the FEM still require a lot of computational resources even with the current computing 

power. These facts have prompted many researches to develop other types of numerical methods. i.e. finite difference 

method [6], spectral element method [7], hybrid boundary element (HBE) method [8], wave finite element (WFE) 

method [9] as well as the semi-analytical finite element method (SAFE) [10]. 

The spectral collocation method (SCM), [11], has been generalized as an alternative to classical partial wave root 

finding (PWRF) routines. To solve elastic (lossless) guided wave problems. Spectral methods were introduced in the 

1970s in the field of fluid dynamics by Kreiss and Oliger [12] and have remained a standard computational tool in 

the field ever since. Using the spectral method, the governing differential equations of GUW are first reduced to the 

ordinary differential equations over the thickness of the plate. This domain is then discretized into a set of collocation 

points, thus, we obtain an approximation of the governing equations by an eigenvalue matrix problem. 

The main objective of this study is to evaluate the performance of the SCM in terms of accuracy and computational 

cost for plotting dispersion curves for an isotropic material. To verify the accuracy of the method, we compared the 

curves plotted with those plotted by the Dispersion Calculator software which uses the stiffness matrix method SMM 

[13] and with the SAFE method. We first present the theoretical formulation of the method for an arbitrary section 

waveguide, then, we discuss some parameters that need to be optimized to ensure accuracy. 

 

2 SCM Formulation and resolution of motion’s equation for a plate 

2.1 Theoretical model  
 

The geometry of the flat waveguide used in this paper and the system of axes are shown in figure 1. we 

consider a 2h thick plate with a wave propagating longitudinally along the z axis. 

       
For the application of the spectral method, we use the Chebyshev differentiation matrices provided by 

Weideman and Reddy 2000[14]. Chebyshev points are used to interpolate unknown functions as follows: 

𝑥𝑗 =  cos (
(𝑖−1)𝜋

𝑁−1
) ,   𝑗 = 1, … . , 𝑁.                     (1) 

 

2.2 Equation of motion  
 

A complete description of the SCM can be found in [15]. The equations of motion for a linear elastic 

anisotropic homogeneous medium are : 

∇𝑖𝐾𝐶𝐾𝐿∇𝐿𝑗
𝑠𝑦𝑚 u𝑗 =  −𝜌 𝜔2 u𝑖                        (2) 

Where we use the convention of summation on the indices and  𝐶𝐾𝐿  is the stiffness matrix of the medium 

in reduced index notation [4], u𝑖 are the components of the vector of the field of displacement. 

u𝑗 =  U𝑗(𝑦) 𝑒𝑖(𝑘𝑧−𝜔𝑡)    ;   𝑗 = 𝑥, 𝑦, 𝑧,                        (3) 

By taking the faces of the plate located at 𝑦 = ±ℎ, see Figure 1, and the plate is considered uncontrained 

at the top and bottom surfaces, the boundary conditions (BC) are as  : 

σ𝑦𝑦|𝑦=±ℎ =  σ𝑦𝑥|𝑦=±ℎ =  σ𝑦𝑧|𝑦=±ℎ = 0.                 (4) 
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Figure 1.  Geometry and axes for at 

waveguide. In the flat case the z axis is 

the phase direction of the propagating 

waves (normal to the plane of the 

wavefront). 2h is the plate thickness and 

the free faces of the plate are placed at 

y=+h and y=-h. 
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The expression of the stress tensor field as a function of the strain tensor field reads  

σ𝑖𝑗 =  𝐶𝑖𝑗𝑘𝑙  𝑆𝑘𝑙                                                                          (5) 

where 𝐶𝑖𝑗𝑘𝑙 is the fourth rank stiffness tensor, which relates to 𝐶𝐾𝐿 as described in [16]. And the strain 

tensor field, 𝑆𝑖𝑗, in terms of the displacement vector field, 𝑢𝑗 ,, is 

𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)     →   𝑆𝐾 =  ∇𝐾𝑗

𝑠𝑦𝑚 u𝑗.               (6) 

We end up with three equations of motion and an additional six equations for the boundary conditions. The 

mth derivative with respect to y is approximated by the corresponding mth order Chebyshev DM. 

𝜕(𝑚)

𝜕𝑦(𝑚)  →  𝐷(𝑚) ≔ [𝐷 𝑀𝐶ℎ𝑒𝑏]𝑁×𝑁
(𝑚)

.                 (7) 

Each of eq. (2) becomes represented in matrix form as, for example, for the component x of displacement. 

𝐴𝑁×𝑁 𝑈𝑥 +  𝐵𝑁×𝑁 𝑈𝑦 + 𝐶𝑁×𝑁 𝑈𝑧 =  −𝜌 𝜔2 U𝑥.               (8) 

A similar matrix representation emerges for each of the other components of the displacement vector 

field. The prefactors 𝐴𝑁×𝑁 , 𝐵𝑁×𝑁 𝑎𝑛𝑑 𝐶𝑁×𝑁  are N×N matrices formed from a linear combination of the 

DMs up to the second degree (𝐷(1), 𝐷(2)) and the identity matrix I with elastic stiffness constants, 𝐶𝐾𝐿, as 

its coefficients. 

It is a matrix system where the unknowns are the vectors U𝑗 and the coefficients are the matrices 

𝐴𝑁×𝑁, 𝐵𝑁×𝑁 𝑎𝑛𝑑 𝐶𝑁×𝑁. This becomes clearer when we rearrange this system as 

[
𝐴 𝐵 𝐶
𝐷 𝐸 𝐹
𝐺 𝐻 𝐼

]

3𝑁×3𝑁

 {

U𝑥 
U𝑦 

U𝑧 
}

3𝑁×1

=   𝜔2  [

−𝜌 I 0 0
0 −𝜌 I 0
0 0 −𝜌 I

] {

U𝑥 
U𝑦 

U𝑧 
}.              (9) 

Or, more specifically. 

𝐿(𝑘) 𝑈 =   𝜔2 𝑀 𝑈,                  (10) 

Where U is the vector of displacement vectors: [𝑈𝑥, 𝑈𝑦, 𝑈𝑧]
𝑇
 . The boundary conditions are then introduced; 

the six equations (4) are discretized and rearranged, as in [15], so 

σ(𝑘) =  [

𝑆𝐴 𝑆𝐵 𝑆𝐶

𝑆𝐷 𝑆𝐸 𝑆𝐹

𝑆𝐺 𝑆𝐻 𝑆𝐼

] {

U𝑥 
U𝑦 

U𝑧 
} =  {

0 
0 
0 

}.                         (11) 

To proceed, in Eq. (9), we replace the 1, N, (N+1), 2N, (2N+1) and 3N rows of the matrix L with those of 

the matrix S of Eq. (11). These lines correspond, for each component of the field of displacement vectors, 

to the points of the grid 𝑦 = ±ℎ, i.e. lines 1 and N start with U𝑥 evaluated at 𝑦 = ℎ and 𝑦 = −ℎ, 

respectively, the rows N+1 and 2N go with U𝑦  evaluated at 𝑦 = ℎ and 𝑦 = −ℎ, and so on. Similarly, we 

replace the same rows of the matrix M on the right side with rows filled with zeros. 

 

2.3 Eigenvalue problem 
 

A reorganization of the terms in the matrix equation (10) will lead to an eigenvalue problem in terms 

of the wavenumber k having the expression: 

[𝑄2𝑘2 + 𝑄1𝑘 + 𝑄0 𝜔2]𝑈 = 0                                                                             (12) 

The matrix on the left of equation (12) is not regular and admits infinite eignvalues [17]. We use the Linear 

Companion Matrix Method [18] as a method of linearization, thus, the eigenvalue problem can be written 

in the following form: 

(𝐴 − 𝑘𝐵)𝑋 = 06𝑁 .                                                                                              (13) 

where A; B, and 𝑋 are defined as : 
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𝐴 =  [
𝑄1 𝑄0 + 𝑀
I3𝑁 Z3𝑁

]  ,     𝐵 =  [
−𝑄2 Z3𝑁

Z3𝑁 I3𝑁
]  ,    𝑋 =  {

𝑘𝑈
𝑈

}  

To ensure numerical stability, the identity matrices in the lower halves of A and B should be scaled by a 

constant whose magnitude is comparable to the entries in 𝑄𝑖 and M. 

Using this formulation, a complex wavenumbers k=𝑘𝑟+i𝑘𝑖 can be solved for by fixing real 𝜔. So we can 

study both propagative (real wavenumber) and non-propagative (complex wavenumber) modes. 

 

3 Results and discussion 
 

An example of isotropic plate is studied in this paper. The plate material is an aluminum with the characteristics 

cited in the table below:  

Table 1 : Characteristics of the studied plate 
 

Thickness 1 mm Poisson’s ratio 0.33 

Young’s modulus 72.4 GPa Mass density 2770 kg/m3 

 

A Matlab programs are established based on SCM and SAFE methods to compute (k,f) dispersion curves. The 

symmetric (S) and the anti-symmetric modes (A) are differentiated by checking the displacement components 

obtained from the eigenvectors.  

 
For the spectral method we define 𝑁𝑐=2m+10 to obtain the necessary precision (see a formal demonstration  based 

on the convergence rates of Chebyshev series  in Gottlieb and Orszag [19]), with m being the mode number. This 

condition is verified in the plotting of the wavenumber dispersion curve as a function of the frequency see figure 2. 

We note that the accuracy has improved from 𝑁𝑐=20 to 𝑁𝑐=30 for the first 10 modes, see figure 2 (a) and figure 2 

(b), respectively.  

 

Figure 2.  Dispersion curves plotted by 

SCM (dashed line) and compared with 

DC software (continuous line) according 

to the number of collocation points 𝑁𝑐: 

(a) 𝑁𝑐=20; (b) 𝑁𝑐=30; the symmetric 

modes (in red) and antisymmetric modes 

(in bleu). (c) zoom in 𝐴9 mode showing 

good accuracy after increasing 𝑁𝑐. 

  

Zoom in 𝐴9 mode  
(a) 

(b) 

(c) 



11e édition des Journées d’Etudes Techniques Marrakech, 16 au 18 novembre 2022 

 

  

Figure 3.  (a) Evolution of relative error of A0 mode computed with SCM, with Bisection method as reference for a given 

two frequencies f1 < f2.  (b) Running time using SCM with respect to the number of collocation points (𝑁𝑐). 

 

Figure 3 (a) shows that is a positive correlation between the frequency and the relative error. For a given number 

of collocation points (𝑁𝑐), when the frequency increases the error does as well. 

Figure 3 (b) shows the variation in running time using a computer with a processor of 2GHz and a memory 

(RAM) of 4 Go. The stepwise increment in k is set as 0.5. we note that the graph is closely cubic in 𝑁𝑐. 

The Graphical representation of the wavenumber-frequency dependence computed with the SCM are exemplarily 

shown in Figure 4 (a) and have been found to present very good agreement with those in Figure 4 (b) computed with 

the SAFE method. On one hand, in Figure 4 (a), junction points 1,2,3,4 show frequency-thickness products for which 

the modes change in nature and become propagative, non-propagative, or attenuated. On the other hand, in figure 4 

(b), the SH modes are included and the purely imaginary modes too (non-propagating highly attenuated modes).  

            

 
Figure 4. Complex dispersion curves in an aluminum plate: (a) Lamb modes plotted using the SCM. (b) Lamb and SH 

modes plotted using SAFE, corresponding to the symmetric (in red) and antisymmetric (in bleu). 

 

  
 

4 Conclusion 
In order to evaluate the efficiency of the SCM method in plotting dispersion curves for an isotropic aluminum 

plate, we have established an algorithm based on the theoretical formulation presented at the beginning of this  

paper. The results were compared with two numerical methods based on SMM and SAFE method. 

                            

                                     

 
  
  

  
  

  
  
  

  
 

 

 

 

 

 

 

 

                          

           

 
  
  
  
  
 
  
  
  

 

   

 

   

 
             

               

  

 

          

 
 
 
 
  
 
  
  

 
  
 

 

  

   

   

(a) (b) 

Nc 

(a) (b) 

Nc 

1 

2 

3 

4 

Figure 5. Wavenumber curve of non-

propagative Lamb modes: SCM (dashed lines) 

and SAFE (solid lines).  

 

Very good accuracy observed at low 

frequencies for the non-propagative modes 

which remain confined in their excitation zone. 
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The SCM remains conceptually simpler, no need to handle special functions such as interpolation functions, 

easy in programming and has a high convergence rate by increasing the number of collocation points. 

The results found illustrate the significant capability of the method to find all the modes without missing any 

and without parasitic modes, unlike zero-finding and SMM methods which require processing in the choice of 

the frequency-thickness step. 

The ability of SCM to find complete three-dimensional solutions for dispersion curves has been demonstrated 

here. The plots include real, complex, and purely imaginary wavenumbers. 
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